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A number of polyhalogenoalkyl-containing phosphonates with an enaminone core were synthesized
from readily available B-alkoxyvinyl polyhalogenoalkyl ketones by successive bromination, amination,
and Arbuzov reaction. The new phosphonates were used for the syntheses of five- and six-membered het-
erocycles bearing both trifluoromethyl and methylenephosphonate groups.

© 2010 Elsevier Ltd. All rights reserved.

The chemistry of fluorinated organo phosphates and phospho-
nates has numerous attractive features. Phosphate esters are
important due to the participation of phosphate-containing mole-
cules in biological processes including signaling pathways, infor-
mation storage, and energy transfer.! As a result, they have been
a topic of interest for many years, with applications mainly direc-
ted toward bioorganic and medicinal chemistry. The development
of new prodrugs among phosph(on)ates and bisphosph(on)ates is
of interest to many medicinal chemists.? The interest in fluorine
substitution of organic groups attached to phosphorus stems from
the possible effect of such substitution on the physical, chemical,
and biological properties of the resulting phosphonates.® In gen-
eral, incorporating fluorine as either a bioisosteric replacement
for hydrogen or an isoelectronic replacement for a hydroxy group
has profound consequences on metabolic degradation, lipophilic-
ity, hydrogen bonding, and the reactivity of organic molecules. Flu-
oro-containing phosphonates are important considering their
unique properties, whilst the development of useful methods for
the synthesis of fluoro-containing phosphonates is of interest for
the synthesis of potentially bioactive substances.*

B-Alkoxy- and B-aminovinyl polyfluoroalkyl ketones are readily
accessible building blocks for the preparation of fluorinated het-
erocycles, amino acids, etc.” However, there are only a few commu-
nications on the reactions of fluorinated enones and enaminones
with phosphites.®’
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As a part of our research program we have studied the reactions
of (B-alkoxy, amino)vinyl chloro(bromo)difluoromethyl ketones
and triethyl phosphite.%’ It was found that the reactivity of
chloro(bromo)difluoromethyl-containing B-alkoxy enones and
similar enaminones was very different in reactions with phos-
phites. pB-Alkoxy enones reacted with triethyl phosphite at room
temperature via the Perkow reaction to yield difluoro-containing
dienyl phosphates.5 In contrast to p-alkoxy enones the reactivity
of enaminones in reactions with phosphites depends strongly on
the basicity of the nitrogen atom. Enaminones containing a nitro-
gen with high or medium basicity did not react with phosphites
under various conditions. At the same time, enaminones with a
nitrogen of low basicity reacted with triethyl phosphite under mild
conditions via Perkow rearrangement to give difluorodienyl phos-
phates.” Also, the reactivity of y-bromo-p-(alkoxy, amino)vinyl
polyhalogenomethyl ketones with phosphites depends strongly
on the nature of the B-substituent. y-Bromo-substituted p-alk-
oxyenones afforded polyhalogenomethyl-containing dienyl phos-
phates®® (Perkow route), while y-bromo-B-morpholinovinyl
trifluoromethyl ketone reacted with triethyl phosphite exclusively
via the Arbuzov protocol to yield a trifluoromethyl-containing
phosphonate (Scheme 1).”

Herein we report our results on the scope and limitations of the
Arbuzov reaction of various y-bromo-B-aminovinyl polyhaloge-
nomethyl ketones with triethyl phosphite. We also demonstrate
the utility of polyfluoroalkyl-containing phosphonates as precursors
for the synthesis of five- and six-membered heterocycles and a 1,3-
diketone bearing both trifluoromethyl and methylenephosphonate
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Scheme 1. Reactions of y-bromo-B-(alkoxy, amino)vinyl polyhalogenomethyl
ketones with triethylphosphite.
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groups. These products are potential precursors for Horner-Wads-
worth-Emmons reaction.®

Polyhalogenoalkyl-containing phosphonates were synthesized
using the strategy presented in Scheme 2. Compounds 2a-e were
obtained by bromination of the corresponding poly-
halogenoalkyl-containing enones 1a-e, as published previously.54°
This method is a general procedure for preparing y-bromo-poly-
halogenoalkyl-containing enones 2 in high yields (80-93%). Enami-
nones 3a-e were synthesized by reaction of polyhalogenoalkyl
ketones 2a-e with morpholine at 25 °C for eight hours.” It is worth
mentioning that various secondary aliphatic amines could be used
for the synthesis of enaminones such as 3, but morpholine pro-
vided better yields and led to easier isolation of the corresponding
enaminones.

Phosphonates 4a-e were obtained via Arbuzov reaction of
enaminones 3 with triethyl phosphite by continuous heating in
1,4-dioxane. We found that the presence of the longer chain per-
fluoroalkyl groups in enaminones 3b,c led to slightly higher yields
in shorter reaction times. It is interesting that in spite of the pres-
ence of two possible reaction centers in compounds 3d,e, we ob-
served exclusively nucleophilic substitution of bromine
furnishing trihalogenomethyl-containing phosphonates 4d,e in
high yields. Similar inactivity of chlorine in trichloromethyl and
chlorodifluoromethyl groups in reactions with phosphites was
noted previously.” The ratio of reagents, reaction times, yields,
and conditions are summarized in Table 1.

To our knowledge, only one compound of similar structure was
previously prepared by trichloroacetylation of N-methylenamines
bearing a phosphonate group in 33% yield.'® Our methodology
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Scheme 2. Synthesis of polyhalogenoalkyl-containing phosphonates 4. Reagents
and conditions: (i) Brp, CH,Cl,, 25°C, 1h; pyridine, 0°C, 1h, 80-93%; (ii)
morpholine, CH,Cl,, 0-25°C, 8 h, 59-85%; (iii) P(OEt);, 1,4-dioxane, 50-100 °C,
72-120 h, 70-85%.

for the synthesis of enaminones containing both polyhalogenoalkyl
and methylenephosphonate groups is efficient and successful on
varying both the polyhalogenoalkyl and amino group. For instance,
bis-enaminone 5 was synthesized from piperazine and two equiv-
alents of enone 2a, and then converted successfully into the corre-
sponding bisphosphonate 6 (Scheme 3).

Compounds 2-6 were fully characterized by 'H, '3C, '°F, and 3'P
NMR spectroscopy and by elemental analysis.!! Exceptions were
the '>C NMR spectra of enaminones 5 and 6 because of poor solu-
bility and the presence of broad signals.

We and others have demonstrated the wide possibilities of
using fluorinated enones and enaminones in heterocyclization
reactions.>'?> The novel compounds 4 represent precursors for
the synthesis of various heterocycles bearing both poly-
halogenoalkyl and methylenephosphonate groups. We used phos-
phonate 4a as a model compound for investigating the scope and
limitations of the utility of this type of phosphonate for the synthe-
sis of five- and six-membered heterocyclic systems (Scheme 4).

It was found that phosphonate 4a reacted with hydrazine hy-
drate under mild conditions to furnish pyrazole 7 in high yield
and purity without the need for any additional purification. In con-
trast, the reaction of enaminone 4a with hydroxylamine in water
afforded isoxazolinol 8 in a low isolated yield. The synthesis of
six-membered heterocycles from phosphonate 4a and (thio)urea
proceeded to give oxy- and thiopyrimidines 9 and 10 in low yields.
We examined various standard heterocyclization conditions, but
only in the case of aqueous methanol with HCI at rt did we obtain
pyrimidines 9 and 10 after preparative HPLC purification. The het-
erocycles were fully characterized by 'H, '3C, '°F, and 3'P NMR
spectroscopy and by elemental analysis. We observed two tauto-
meric forms in the NMR spectra of compound 9. Similar behavior
of trifluoromethyl-containing 2-substituted pyrimidines was de-
scribed earlier.!?

Unfortunately, the corresponding substituted pyrimidines were
not obtained by the reaction of phosphonate 4a with guanidine or
amidines under standard conditions, although the disappearance
ofthe enaminone signal at —78 ppm was evident from '°F NMR spec-
troscopy. We observed an increase in the intensity of the singlet at
—85 ppm characteristic for hydrates of trifluoromethyl ketones.
The hydrolysis of enaminone 4a takes place in acidic aqueous med-
ium and the methylenephosphonate-containing trifluoromethyl
diketone 11 was formed, presumably according to the poor results
obtained during the pyrimidine synthesis.

We synthesized diketone 11 via hydrolysis of enaminone 4a in
the presence of hydrochloric acid to confirm our assumption
(Scheme 5). Diketone 11 did not react with (thio)urea, guanidine,
or amidines under various condensation conditions (in aqueous
methanol and ethanol, aqueous 1,4-dioxane, toluene, at 30-110 °C
and in the presence of hydrochloric or toluenesulfonic acids).

Compound 11 was isolated in hydrate form according to NMR
spectra and elemental analysis. As expected, diketone 11 formed
complex equilibria mixtures of various tautomers and hydrate
forms (Scheme 6) depending on the nature of the solvents. The
spectral data were complicated by the possible formation of intra-
molecular enol hydrogen bonds with keto- or phosphonate groups.
Thus, in the F NMR spectrum of diketone 11 we observed, in
CDCls, the dominance of two signals at —77.0 and —87.5 ppm in
a 5:1 ratio, and in methanol, mainly two hydrate forms with sig-
nals at —83.9 and —87.9 ppm in a 3:1 ratio were observed. Only
in dry DMSO-dg did compound 11 exists as nearly one isomer
which allowed us to prove its structure as 11d—the hydrate form
of diketophosphonate 11.

It should be noted that diketophosphonate 11 was reported pre-
viously but without any synthetic or characteristic data and was
used as the starting material for the synthesis of fluorinated hydro-

Xy phosphonic acid via reduction with Baker’s yeast.'*
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Table 1
Reaction conditions for the synthesis of phosphonates 4a-e, 6
Substrate Ratio of 3 (5):P(OEt)s3 Temperature (°C) Product Time (h) Yield (%)
3a 1:1.2 100 4a 72 74
3b 1:1.2 100 4b 72 84
3c 1:1.2 100 4c 72 87
3d 1:0.8 50 4d 96 58
3e 1:0.8 50 4e 96 46
5 1:2.2 100 6 96 72
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Scheme 5. Synthesis of diketone 11. Reagents and conditions: (i) MeOH, concd HCl,
rt, 15 h, 53%.
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Scheme 3. Synthesis of fluorinated bisphosphonate 6. Reagents and conditions: (i) 1 11d
piperazine, CH,Cl,, 0—25 °C, 8 h, 86%; (ii) P(OEt)s, 1,4-dioxane, 100 °C, 120 h, 68%. “
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Scheme 4. Synthesis of five- and six-membered heterocycles 7-10 bearing both
trifluoromethyl and methylene phosphonate groups. Reagents and conditions: (i)
N,H4-H,0, CH;Cl,, 0—25 °C 12 h, 73%; (ii) NH,OH-HCI, NaHCOs3, methanol-water, rt,
3 h, 27%; (iii, iv) (thio)urea, HCI, methanol-water, rt, 144 h, 21-23%.

In conclusion, we have investigated the scope and limitations of
the reactions of various y-bromo-f-aminovinyl polyhalogenoalkyl
ketones with triethyl phosphite. This reaction represents a method
to synthesize fluorinated phosphonates in moderate to high yields.
No side reactions/products were observed during the course of the

oxopent-2-enylphosphonate (4a), we have demonstrated the util-
ity of this class of phosphonates for the synthesis of heterocycles
bearing both polyhalogenoalkyl and methylenephosphonate
groups.
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